# Zeitronix Breitband Lambdasonde anschließen und von Spg. auf AFR Werte ändern

Die MS1-PNP-Extra kann mit vielen Breitband-Sensor-Systeme aus dem Zubehörhandel wie z.B. die "Innovate Motorsports LC-1" betrieben werden. Sie müssen die MS1-PNP-Extra mit einem programmierbaren analogen Ausgang aus dem Breitband-Lambda-Controller verbinden und die Angaben des Herstellers berücksichtigen.

Es gibt zwei Möglichkeiten den Breitband-Lambda-Controller an die MS1-PNP-Extra anzuschließen. Grundsätzlich muss aber als erstes das Kabel, welches von der originalen Lambda-Sonde kommt, in der Nähe des Steckers vom Steuergerät getrennt werden. Das durchtrennte Kabel von der Lambda-Sonde darf nicht mit Masse in Berührung kommen (Kabel isolieren).

Dann können Sie entweder den Analogausgang des Lambda-Controllers mit Pin 10 des mittleren Steckers der MS1-PNP-Extra verbinden, oder Sie können den Analogausgang des Lambda-Controllers mit dem originalen Sensorkabel am Stecker des Steuergerätes verbinden.

Steckerbelegung am Steuergerät vom NA 90-93:

## MOTORSTEUERGERÄT MX-5 NA 90-93: STECKERBELEGUNG ECU SEITIG

| <b>[</b> — |    |    |    |    | 1  |    |    |    |    |    |    |    |    |    |    |    |    | -1 |    |    |    |    |    |
|------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 2Y         | 2W | 2U | 2S | 2Q | 20 | 2M | 2K | 21 | 2G | 2E | 2C | 2A | 1U | 1S | 1Q | 10 | 1M | 1K | 11 | 1G | 1E | 1C | 1A |
| 2Z         | 2X | 2V | 2T | 2R | 2P | 2N | 2L | 2J | 2H | 2F | 2D | 2B | 1V | 1T | 1R | 1P | 1N | 1L | 1J | 1H | 1F | 1D | 1B |

## ZEITRONIX ZT-2 2009: STECKERBELEGUNG CONTROLLER SEITIG



| De     | Der Anschluss des Zeitronix ZT-2 Controllers an die MS1-PNP erfolgt wie nachstehend beschrieben: |              |                     |            |                                |  |  |  |  |  |
|--------|--------------------------------------------------------------------------------------------------|--------------|---------------------|------------|--------------------------------|--|--|--|--|--|
|        | MS1-PNP                                                                                          |              | Zeitronix ZT-2 2009 |            |                                |  |  |  |  |  |
| Klemme | Anschluss                                                                                        | Sollspannung | Klemme              | Arderfarbe | Bezeichnung                    |  |  |  |  |  |
| 2D     | Masse (Eingang)                                                                                  | konstant 0V  | 8                   | Braun      | Masse (Sensor) konstant 0V     |  |  |  |  |  |
| 2N     | Lambdasonde                                                                                      | 0V - 5V      | 9                   | Lila       | Breitband-Lambdasignal 0V - 5V |  |  |  |  |  |

Nach dem Anschluss des Breitband-Sensor-Controllers, müssen Sie ein paar Einstellungen an der MS1-PNP-Extra ändern.

Damit MegaTune die Werte korrekt anzeigt, starten Sie den MegaTune-Configurator im Programm MegaTune, oder aus der Gruppe MegaTune in Ihrem Startmenü. Sie finden in der linken Spalte eine Liste die mit MegaTune2.25 beginnt und im Folgenden die entsprechenden Projekte enthält. Die Projektbezeichnung ist beim 93er NA entweder "MSPNP MM9093 with AFM", "MSPNP MM9093 without AFM" oder eine angelegte Projektbezeichnung, beim BlueNA heißt diese "BlueNA-withoutAFM-withZT-2" (**A**ir **F**uel **M**eter = Luftmengenmesser). Klicken Sie auf das Pluszeichen im Feld neben dem Projekt, dann auf settings.ini, Settings und dann auf LAMBDA\_SENSOR.

| 🖼 C:/Programme/MegaSquirt/BlueNA with AFM and | C:/Programme/MegaSquirt/BlueNA with AFM and ZT-2/mtCfg/settings.ini              |  |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------|----------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| File Project Help                             |                                                                                  |  |  |  |  |  |  |  |  |  |  |
| ⊞- MegaTune2.25                               | LAMBDA_SENSOR (group)                                                            |  |  |  |  |  |  |  |  |  |  |
| BlueNA with AFM and ZT-2                      | ZEITRONIX_NON_LINEAR Zeitronix Non-linear WB                                     |  |  |  |  |  |  |  |  |  |  |
| 主 - custom.ini                                |                                                                                  |  |  |  |  |  |  |  |  |  |  |
| 🖻 settings.ini                                | 00047 #group LAMBDA_SENSOR "MS-I Lambda Sensor Type"                             |  |  |  |  |  |  |  |  |  |  |
| <ul> <li>Settings</li> </ul>                  | 00048 #unset NARROW_BAND_EG0 "Narrowband Sensor"                                 |  |  |  |  |  |  |  |  |  |  |
| - CODE_VARIANT                                | 00049 #unset WB_1_0_LINEAR "Wideband in NB Emulator Mode, 0-1v 1.5-0.5 Lambda"   |  |  |  |  |  |  |  |  |  |  |
| IDLE CONTROLLER                               | 00050 #unset AEM_LINEAR "AEM Gauge AEM-30-42xx"                                  |  |  |  |  |  |  |  |  |  |  |
| LAMBDA SENSOR                                 | 00051 #unset AEM_NON_LINEAR "AEM UEGO Controller AEM-30-230x"                    |  |  |  |  |  |  |  |  |  |  |
| LAMBDA                                        | 00052 #unset DIYWB_NON_LINEAR "DIY-WB or Tech Edge non-linear output"            |  |  |  |  |  |  |  |  |  |  |
| - Fueling Algorithm                           | 00053 #unset DYNOJET_LINEAR "DynoJet Wideband Commander"                         |  |  |  |  |  |  |  |  |  |  |
| CELSIUS                                       | 00054 #unset TECHEDGE_LINEAR "Tech Edge sensor giving 0-5V 9-19:1 AFR"           |  |  |  |  |  |  |  |  |  |  |
|                                               | 00055 #unset INNOVATE 1_2_LINEAR "Innovate sensor giving 1-2V 10-20:1 AFR"       |  |  |  |  |  |  |  |  |  |  |
| KPa                                           | 00056 #unset INNUVATE U.S.LINEAR "Innovate, PLX U-SV 10-20:1 AFR"                |  |  |  |  |  |  |  |  |  |  |
|                                               | 00057 #unset INNOVAIE LUI DEFAULT "Innovate LU-1 default, 0-5v = 0.5-1.5 lambda" |  |  |  |  |  |  |  |  |  |  |
| IT MCDND MM0002 with AEM                      | 00058 # Set ZEITRUNIX NUN_LINEAR "Zeitronix Non-linear WB"                       |  |  |  |  |  |  |  |  |  |  |
| E MODND MM0000 without AFM                    | 00059 #unset WB_UNKNUWN "Wideband sensor but none of the above types"            |  |  |  |  |  |  |  |  |  |  |
| E MODER MINDAGE WE MAE                        | uuuuu magroup                                                                    |  |  |  |  |  |  |  |  |  |  |
| E MODER MERADO WITH MAP                       | 00061<br>00062 www.set LANDRA (Display Lankis instead of ATD in Course)          |  |  |  |  |  |  |  |  |  |  |
| MSPNP MM9495 without MAF                      | 100062 #unset LAMBDA "Display Lambda instead of AFR in Gauges"                   |  |  |  |  |  |  |  |  |  |  |
| H MSPNP MM9697 with MAF                       | 00063                                                                            |  |  |  |  |  |  |  |  |  |  |
| MSPNP MM9697 without MAF                      | 00064 ;                                                                          |  |  |  |  |  |  |  |  |  |  |
|                                               |                                                                                  |  |  |  |  |  |  |  |  |  |  |

Sie erhalten ein Menü mit Breitband-Lambda-Controllern auf der rechten Seite sehen. Wählen Sie die von Ihnen eingesetzte Breitband-Sonde aus (BlueNA = Zeitronix Non linear). Wenn Sie die o.g. Einstellung vorgenommen haben, gehen Sie auf das Menü File und wählen Save.

Sobald Sie den Configurator eingestellt haben, müssen Sie ein paar Einstellungen in MegaTune vornehmen und diese in die MegaSquirt PNP übertragen. Die entsprechenden Einstellungen finden Sie unter "Basic Settings / Exhaust Gas Settings". In der Box EGO Control ändern Sie EGO Sensor Typ von "Narrow band" auf "Wide band" und den EGO Switch Point (V) von 0.51V auf 2.50V. Die 2,50V entsprechen bei der Zeitronix einem AFR von 14,7 bzw. einem Lambda von 1,00. Die MegaSquirt1-PNP-Extra wird versuchen, dieses Luft-Kraftstoff-Verhältnis bei der Einstellung "geschlossener Regelkreis (Closed Loop)" zu halten.

| Ignition Events or msec per Step: | Nach wie viel Zündvorgänge oder nach wie viel Millisekunden    |
|-----------------------------------|----------------------------------------------------------------|
|                                   | ein weiterer Regelschritt erfolgt.                             |
| Controller Step Size (%)          | Regelweite bzw. Schrittweite                                   |
| Controller Authority +/- (%):     | Ist der maximale Regelbereich (gem. Bild unten = max. +-5%).   |
|                                   | Ego Control versucht den Ziel AFR (aus dem AFR Tabel) zu       |
|                                   | erreichen und gleicht dabei die Werte aus dem VE Table an.     |
|                                   | Um eventuelle Fehler aus der VE Tabelle auszugleichen, gibt es |
|                                   | EGO Control mit Closed Loop. Beim Abstimmen der VE Tabelle     |
|                                   | kann der Regelbereich etwas größer und nach dem Abstimmen      |
|                                   | wieder etwas kleiner gewählt werden.                           |
| Active Above Coolant Temp (C):    | Sensor aktiv oberhalb der angegebenen Kühlmittel Temperatur    |

Active Above Coolant Temp (C Active Above RPM (U/Min.): Sensor aktiv oberhalb der angegebenen Kühlmittel Temperatur Sensor aktiv oberhalb der angegebenen Motor Drehzahl

| 🛂 EGO Control                            |           |               |  |  |  |  |  |  |
|------------------------------------------|-----------|---------------|--|--|--|--|--|--|
| EGO Sensor Type                          | Wide band | •             |  |  |  |  |  |  |
| EGO Switch Point (v)                     |           | 2.509         |  |  |  |  |  |  |
| Ignition Events or msec per Step         |           | 72            |  |  |  |  |  |  |
| Controller Step Size (%)                 |           | 1             |  |  |  |  |  |  |
| Controller Authority +/- (%)             |           | 5             |  |  |  |  |  |  |
| Active Above Coolant Temp (C)            |           | 71            |  |  |  |  |  |  |
| Active Above RPM (RPM)                   |           | 1500          |  |  |  |  |  |  |
| EGO Correction Step Counter Ign Pulses*^ |           |               |  |  |  |  |  |  |
| Eetch From ECU                           | ECU       | <u>C</u> lose |  |  |  |  |  |  |

| 🔀 AFR Targets for VE Table 1 (AFR) |                                                |  |  |  |  |  |  |  |  |
|------------------------------------|------------------------------------------------|--|--|--|--|--|--|--|--|
| <u>F</u> ile <u>T</u> ools         |                                                |  |  |  |  |  |  |  |  |
| - kPa                              | Volts                                          |  |  |  |  |  |  |  |  |
| 200                                | 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90        |  |  |  |  |  |  |  |  |
| 170                                | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00        |  |  |  |  |  |  |  |  |
| 140                                | 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16        |  |  |  |  |  |  |  |  |
| 100                                | 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25        |  |  |  |  |  |  |  |  |
| 80                                 | 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74        |  |  |  |  |  |  |  |  |
| 65                                 | 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10        |  |  |  |  |  |  |  |  |
| 55                                 | 2.35 2.35 2.35 2.51 2.51 2.51 2.35 2.35        |  |  |  |  |  |  |  |  |
| 30                                 | <b>2.35</b> 2.35 2.35 2.35 2.35 2.35 2.35 2.35 |  |  |  |  |  |  |  |  |
|                                    |                                                |  |  |  |  |  |  |  |  |
|                                    | 500 1000 2000 3000 4000 5000 6000 7500         |  |  |  |  |  |  |  |  |
|                                    |                                                |  |  |  |  |  |  |  |  |

Mit den Open-Loop-Modus Einstellungen unter dem Menü "More Settings / Open Loop Mode" wird festgelegt, ab welchen Wert die MegaSquirt die Information der Breitband-Lambda-Sonde nicht mehr beachtet und nur noch nach den Werten aus der VE Tabelle arbeitet. Die "Open Loop O2 Correction" ist standardmäßig auf KPa gesetzt. Auf diese Weise können Sie die Sauerstoff-Sensor-Korrektur oberhalb eines bestimmten Ladedrucks ausschalten.

Sofern Sie ein Trottle-Position-Signal (TPS) verwenden und die MegaSquirt entsprechend modifiziert haben, ist es notwendig die "Open Loop O2 Correction" auf TPS zu setzen.

| 🔀 Open Loop Mode                              |               |  |  |  |  |  |  |  |
|-----------------------------------------------|---------------|--|--|--|--|--|--|--|
| Open Loop O2 Correction: KPa                  | •             |  |  |  |  |  |  |  |
|                                               |               |  |  |  |  |  |  |  |
| If TPS selected then go Open Loop @ (Raw) 192 |               |  |  |  |  |  |  |  |
| If KPa selected then go Open Loop @ (KPa)     | 53            |  |  |  |  |  |  |  |
| Set selection to zero for no Openloop         |               |  |  |  |  |  |  |  |
| Restart MS after changes                      |               |  |  |  |  |  |  |  |
| F1 Eetch From ECU Burn To ECU                 | <u>C</u> lose |  |  |  |  |  |  |  |

Wenn Sie allerdings eine Breitband-Lambda-Sonde benutzen, brauchen Sie die Korrektur nicht bei "Vollgas" bzw. oberhalb eines bestimmten Druckes – hier 53kPa – zu deaktivieren wie bei der originalen ECU. Der Open Loop wird deaktiviert in dem man die Werte auf "0" setzt oder die Werte so hoch ansetzt, dass sie in der Praxis nicht erreicht werden (z.B. TPS=500 und kPa=250). Stattdessen können Sie in der MegaSquirt eine Zielvorgabe für ein mageres Luft-Kraftstoff-Verhältnis beim Cruisen und eine Zielvorgabe für ein fettes Luft-Kraftstoff-Verhältnis beim Beschleunigen vorgeben. Der Sauerstoff-Sensor (= Lambda-Sonde) unterstützt Sie bei den Zielvorgaben. Um die Zielvorgaben ein bzw. frei zu geben wählen Sie aus dem Menü "More Settings" die Lambda AFR Settings und schalten die 8 x 8 AFR Zieltabelle für die VE Tabelle 1 ein.

| 📕 Lambda Sensor Targets                        |                   |  |  |  |  |  |  |  |  |
|------------------------------------------------|-------------------|--|--|--|--|--|--|--|--|
| Set to 255KPa for B+G Default                  |                   |  |  |  |  |  |  |  |  |
| Change Ego Limit above (KPa)                   | 245               |  |  |  |  |  |  |  |  |
| Change Ego Limit to (+-)                       | 0                 |  |  |  |  |  |  |  |  |
|                                                |                   |  |  |  |  |  |  |  |  |
| 8x8 AFR Target Tables                          |                   |  |  |  |  |  |  |  |  |
| For VE Table 1 🛛 🔶                             | On 💌              |  |  |  |  |  |  |  |  |
| For VE Table 3                                 | Off*^(DT)         |  |  |  |  |  |  |  |  |
| Control Algorithm for AFR tables               | Speed Density 💌   |  |  |  |  |  |  |  |  |
|                                                |                   |  |  |  |  |  |  |  |  |
| Use Target tables:                             | Always 💌          |  |  |  |  |  |  |  |  |
| Use Enrichment EGO Switch Point until TPS: 255 |                   |  |  |  |  |  |  |  |  |
| F1 <u>Fetch From ECU</u> Burn To               | ECU <u>C</u> lose |  |  |  |  |  |  |  |  |

Sobald diese aktiviert ist, können Sie auf die AFR Zieltabelle gehen und in Abhängigkeit von Drehzahl und Ladedruck die Lambda Spannung angeben. Die Richtwerte in dieser Zieltabelle sind die Roh-Ausgangsspannungen vom Sauerstoff-Sensor-Controller, nicht die tatsächlichen Luft-Kraftstoff-Verhältnisse. Achtung:

Bei der Zeitronix werden Spannungswerte eingegeben.

Bei der Innovate werden AFR Werte eingegeben.

Bei allen anderen Sonden ist die Eingabe (Spannung oder AFR) vorher zu prüfen.

| 📕 AFR Ta                   | rgets for VE Table 1 (AFR)                     | × |  |  |  |  |  |  |  |
|----------------------------|------------------------------------------------|---|--|--|--|--|--|--|--|
| <u>F</u> ile <u>T</u> ools |                                                |   |  |  |  |  |  |  |  |
| _ kPa——                    | _ Volts                                        |   |  |  |  |  |  |  |  |
| 200                        | 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90        |   |  |  |  |  |  |  |  |
| 170                        | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00        |   |  |  |  |  |  |  |  |
| 140                        | 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16        |   |  |  |  |  |  |  |  |
| 100                        | 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25        |   |  |  |  |  |  |  |  |
| 80                         | 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74        |   |  |  |  |  |  |  |  |
| 65                         | 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10        |   |  |  |  |  |  |  |  |
| 55                         | 2.35 2.35 2.35 2.51 2.51 2.51 2.35 2.35        |   |  |  |  |  |  |  |  |
| 30                         | <b>2.35</b> 2.35 2.35 2.35 2.35 2.35 2.35 2.35 |   |  |  |  |  |  |  |  |
|                            | BPM                                            |   |  |  |  |  |  |  |  |
|                            | 500 1000 2000 3000 4000 5000 6000 7500         |   |  |  |  |  |  |  |  |

# Zeitronix analog Ausgang (weißes Kabel), Verhältnis Spannung zu AFR

| ۷   | 0,15 | 0,31 | 0,46 | 0,62 | 0,78 | 0,93 | 1,09 | 1,24 | 1,40 | 1,56 | 1,71 | 1,87 | 2,02 | 2,18 | 2,34 | 2,50 | 2,65 | 2,80 | 2,96 | 3,00 | 3,12 | 3,27 |
|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| AFR | 9,7  | 9,9  | 10,1 | 10,3 | 10,5 | 10,7 | 11,0 | 11,4 | 11,7 | 12,1 | 12,4 | 12,8 | 13,2 | 13,7 | 14,2 | 14,7 | 15,6 | 16,9 | 18,5 | 18,8 | 19,9 | 21,2 |

# Druckwerte (kPa):

Bei den kPa Werten (Kilopascal) handelt es sich um Druckwerte. 100 KPa entsprechen einem neutralen Druck (weder Unter- noch Überdruck). Somit sind die Werte bis 100 KPa für einen Saugmotor maßgeblich (<100 kPa = Unterdruck und >100 kPa = Überdruck).

| KPa | 19     | 26     | 35    | 55    | 75    | 84    | 100 | 128  | 156  | 184   | 212   | 230   |
|-----|--------|--------|-------|-------|-------|-------|-----|------|------|-------|-------|-------|
| PSI | -11,74 | -10,73 | -9,42 | -6,52 | -3,62 | -2,32 | 0   | 4,06 | 8,13 | 12,19 | 16,25 | 18,86 |
| BAR | -0,81  | -0,74  | -0,65 | -0,45 | -0,25 | -0,16 | 0   | 0,28 | 0,56 | 0,84  | 1,12  | 1,3   |

# AutoTune:

MegaTune ist auch in der Lage, auf Basis der Ausgangswerte der Lambda-Breitband-Sonde, die VE Tabellen selbstständig einzustellen. Dieses Feature nennt sich AutoTune. Die Software wird die VE-Tabellen in einem begrenzten Bereich justieren, um das Luft-Kraftstoff-Verhältnis entsprechend Ihren Vorgaben einzustellen. Verwenden Sie diese Funktion mit Vorsicht und stellen Sie sicher, dass Ihre Vorgaben und Sensor-Messwerte richtig sind, bevor Sie diese aktivieren. Sie werden weiterhin noch die Feinabstimmung per Hand erledigen müssen. Sie sollten sich nicht ausschließlich auf den AutoTune Modus verlassen, um Ihren Motor bzw. die MegaSquirt abzustimmen.

# Eingabe von AFR an Stelle von Spannungs-Werten bei der ZT-2

Die Firmen <u>DIYAutoTune</u> und <u>EFI-Analytics</u> haben bei der Bedien-Software TunerStudio und MegaTune mehrere Breitbandsonden im Setup berücksichtigt. Einzig bei der Breitbandsonde der Firma Innovate wird die Eingabe von AFR Werten berücksichtigt, bei allen anderen Sonden werden nur Spannungswerte akzeptiert. Die Eingabe von Spannungswerten in die AFR Zieltabelle ist sehr umständlich da die Werte aus einer Umsetzungstabelle AFR zu Spannung entnommen werden müssen und eine Überprüfung der AFR Zieltabelle ohne Umsetzungstabelle schlichtweg nicht möglich ist. Erschwerend kommt hinzu, dass im Setup nur die Zeitronix mit nicht linearem Breitband-Ausgang aufgeführt ist. Somit folgend eine Anleitung, wie die Eingabe von AFR Werten an Stelle von Spannungs-Werten in die AFR Zieltabelle erfolgt.

Die Firma Zeitronix (in Deutschland werden deren Produkte durch Lambda-Tuning vertrieben) bietet komplette Lambda Meßsysteme von der einfachen Erfassung bis hin zur Speicherung und Visualisierung an. Grundsätzlich sind drei verschiedene Controller zu unterscheiden:

- 1. Zeitronix ZT-2 Breitband-Controller bis 2009 besitzt zwei Ausgänge für das AFR Signal.
  - a) Pin2 Aderfarbe Weiß: nicht linearer analoger Breitbandausgang (für MS1-PNP-Extra)
  - b) Pin9 Aderfarbe Lila: simulierter Schmalbadausgang oder linearer Breitbandausgang
- 2. Zeitronix ZT-2 Breitband-Controller ab 2010 besitzt zwei Ausgänge für das AFR Signal.
  - a) Pin2 Aderfarbe Weiß: linearer analoger Breitbandausgang
  - b) Pin9 Aderfarbe Lila: programmierbarer simulierter Schmalbadausgang
- 3. Der Zeitronix ZT-3 Breitband-Controller besitzt zwei Ausgänge für das AFR Signal.
  - a) Pin2 Aderfarbe Weiß: linearer analoger Breitbandausgang
  - b) Pin4 Aderfarbe Lila: programmierbarer simulierter Schmalbadausgang

Allen Controllern gemeinsam ist ein linearer Breitbandausgang gemäß folgender Kennlinie:









Die lineare Breitband-Kennlinie der Zeitronix Breitbandsonde muss in einer mathematischen Form in die Programme **MegaTune** und **TunerStudio** integriert werden.

## Folgend die Anpassungen für das Programm MegaTune:

- <u>lambdaSensor.ini</u>
   In diese Datei wird die mathematische Beschreibung der Kennlinie f
   ür die AFR Anzeige in MegaTune hinterlegt.
   C:\Programme\MegaSquirt\*Projektbezeichnung*\mtCfg\
- 2. <u>settings.ini</u>

Hiermit wird in MegaTune die Auswahl um die "Zeitronix Linear WB" erweitert. C:\Programme\MegaSquirt\*Projektbezeichnung*\mtCfg\

3. msns-extra.ini

Hier erfolgt für MegaTune die Ergänzung der Firmware Definition um die "Zeitronix Linear WB". Achtung:

Die Ergänzung um die "Zeitronix Linear WB" muss bei jeder Firmware Definition bzw. Projektbezeichnung separat erfolgen. Wird also die Firmware 029y3 an Stelle von 029q eingesetzt, so muss die jeweilige msns-extra.ini auch um die "Zeitronix Linear WB" ergänzt werden. C:\Programme\MegaSquirt\*Projektbezeichnung*\mtCfg\

zu 1. lambdaSensor.ini

In diese ini Datei muss die mathematische Beschreibung der Kennlinie für die AFR Anzeige in MegaTune hinzugefügt werden.

#elif ZEITRONIX\_LINEAR

```
      afr
      = { 9.6 + (egoADC * 0.039216) }
      }

      lambda
      = { afr / 14.7 }
      }

      TargetAFR
      = { 9.6 + (afrtarget * 0.039216) }
      }

      TargetLambda
      = { TargetAFR / 14.7 }
      }
```

a) Erläuterung der Konstanten 9,6:

Hierbei handelt es sich um den AFR Startwert bei 0Vout sensor gemäß oben stehender Kennlinie. Dies ist der geringste AFR Wert (= 9,6 AFR) der von der Zeitronix Breitbandsonde gemessen werden kann.

b) Erläuterung egoADC:

EGO steht für ExhausGasOxigen = Sauerstoffgehalt im Abgas. Die vom Sensor gelieferte Spannung, bei einer Breitbandsonde meist 0V bis 5V, wird vom ADC = AnalogDigitalConverter in einen Zählwert von 0 bis 255 umgesetzt. Somit gibt egoADC den Sauerstoffgehalt im Abgas als Zählwert zwischen 0 und 255 wieder. c) Erläuterung der Konstanten 0,039216:

Das ADC (AnalogDigitalSignal), das von 0 bis 255 geht, verhält sich proportional zur Ausgangsspannung des Sensors, die von 0V bis 5V geht. Somit gilt:

ADC 0 = 0VOUT Sensor ADC 255 = 5VOUT Sensor

Um jetzt zu bestimmen wie viel Volt Sensorspannung ein ADC Zählwert ist, muss man die Werte in ein Verhältnis setzen:

VOUT Sensor max. 5V / ADC max. 255 = 0,019607843V

Gemäß oben stehender Kennlinie ist:

AFR = 2 x Vout + 9,6

Somit muss die Sensorspannung verdoppelt werden: 2 x 0,019607834V = 0,39215686V gewählt: 0,039216V

- d) Proberechnung
  - Ausgangsspannung der Sonde = 0V => egoADC =0
     AFR = 9,6 + egoADC \* 0,039216 = 9,6 + 0 \* 0,039216V = 9,6 ok
  - Ausgangsspannung der Sonde = 2,5V => egoADC = 127
     AFR = 9,6 + egoADC \* 0,039216 = 9,6 + 127 \* 0,039216V = 14,6 ok
  - Ausgangsspannung der Sonde = 5V => egoADC = 255
     AFR = 9,6 + egoADC \* 0,039216 = 9,6 + 255 \* 0,039216V = 19,6 ok

Folgend die Datei "lambdaSensor.ini" mit der Beschreibung der linearen Zeitronix Kennlinie:

| 📕 lambdaSensors.ini - Editor                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| <u>D</u> atei <u>B</u> earbeiten F <u>o</u> rmat <u>A</u> nsicht <u>?</u>                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                             |
| <pre>#elif INNOVATE_LC1_DEFAULT ; 0.0v = 0.5 lambda = 7.35:1 AFR ; 2.5v = 1.0 lambda = 14.70:1 AFR ; 5.0v = 1.5 lambda = 22.05:1 AFR ; afr = 7.35 + egoADC * 0.057647 lambda = { egoADC/255.0 + 0.5 afr = { lambda * 14.7 TargetLambda = { afrtarget/255.0 + 0.5 TargetAFR = { TargetLambda * 14.7 #elif ZEITRONIX_NON_LINEAR afr = { table(egoADC, "WBafr100Zeit.inc") / : lambda = { afr / 14.7 TargetAFR = { table(afrtarget, "WBafr100Zeit.inc") / : TargetLambda = { TargetLambda / 14.7</pre> | Beschreibung der linearen Zeitronix<br>Kennlinie hinzufügen |
| <pre>#elif ZEITRONIX_LINEAR     afr = { 9.6 + (egoADC * 0.039216)     lambda = { afr / 14.7     TargetAFR = { 9.6 + (afrtarget * 0.039216)     TargetLambda = { TargetAFR / 14.7</pre>                                                                                                                                                                                                                                                                                                              |                                                             |
| #ETIT AEM_LINEAR<br>afr = { 9.72 + egoADC * 0.038666<br>lambda = { afr / 14.7<br>TargetAFR = { 9.72 + afrtarget * 0.038666<br>TargetLambda = { TargetAFR / 14.7                                                                                                                                                                                                                                                                                                                                     | }                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             |

## zu 2. settings.ini

In diese ini Datei muss der Verweis auf die lineare Zeitronix Kennlinie hinzugefügt werden. Hier ist besonders darauf zu achten, dass die Schreibweise (groß, klein, etc.) genau wie in der Datei lambdaSensor.ini erfolgt. Folgende mathematische Beschreibung ist zu ergänzen:

| # s                              | et ZEITRONIX_LINEAR "Zeitronix Linear WB"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 🗾 se                             | ettings.ini - Editor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×   |
| <u>D</u> atei                    | Bearbeiten Format Ansicht ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| ; P <sup>4</sup><br>; mu<br>; Ca | ick an O2 sensor setup, exactly one of these must be #set and the rest<br>ust be #unset. None of this is applicable to MS-II, see all the<br>libration options under the Tools menu when using standard B&G MS-II code.<br>Verweis auf die lineare Zeitronix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~   |
| #grt                             | Jup ELAMBDA_SENSOR       MS-1 Lambda Sensor       Kennlinie hinzufügen.         Funset NARROW_BAND_EGO       "Narrowband Sensor"       Kennlinie hinzufügen.         Funset WB_1_0_LINEAR       "wideband in NB Emulator Mode, 0-1v 1.5-0.5 Lambda"         Funset AEM_LINEAR       "AEM Gauge AEM-30.42xx"         Funset AEM_NON_LINEAR       "AEM UEGO Controller AEM-30-230x"         Funset DIYWB_NON_LINEAR       "DIY-WB or Tech Edge non-linear output"         Funset DYNOJET_LINEAR       "DIY-WB or Tech Edge non-linear output"         Funset INNOVATE_LINEAR       "Diynojet wideband Commander"         Funset INNOVATE_LINEAR       "Tech Edge sensor giving 0-5v 9-19:1 AFR"         Funset INNOVATE_LO_S_LINEAR       "Innovate Sensor giving 1-2v 10-20:1 AFR"         Funset INNOVATE_O_S_LINEAR       "Innovate PLX 0-5v 10-20:1 AFR"         Funset INNOVATE_LC1_DEFAULT       "Innovate LC-1 default, 0-5v = 0.5-1.5 lambda"         Funset VE_ONNNOWN       "Wideband Sensor But Hone of the above types" | III |
| #uns                             | et LAMBDA "Display Lambda instead of AFR in Gauges"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| <                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |

### zu 3. msns-extra.ini

Diese ini Datei dient zur Darstellung der AFR Werte im Programm MegaTune. Hier sind die mathematischen Beschreibungen auf der Seite 7 AFR Table 1 und AFR Table 2 zu ergänzen. Auch hier ist wieder besonders darauf zu achten, dass die Schreibweise (groß, klein, etc.) genau wie in der Datei lambdaSensor.ini erfolgt. Folgende mathematischen Beschreibungen sind zu ergänzen:

```
#elif ZEITRONIX_LINEAR
```

```
afrBins1 = array, U08, <mark>0</mark>, [8x8], "AFR", 0.0392, 244.8, 9.6, 19.6, 1
```

| 🖪 m          | isns-extra.ini - Editor                                               |             |         |           |           |                                   |                  |         |       |    |      |
|--------------|-----------------------------------------------------------------------|-------------|---------|-----------|-----------|-----------------------------------|------------------|---------|-------|----|------|
| Datei        | Bearbeiten Format Ansicht ?                                           |             |         |           |           |                                   |                  |         |       |    |      |
| P            | Jage = 7 (; TARGET A                                                  | .FR table : | 1 BINS  | 5 FOR VE  | 1 (First  | find which sensor                 | used)            | )       |       |    | ~    |
| #if<br>#⊝li  | NARROW_BAND_EGO<br>afrBins1 = array,                                  | U08,        | ο,      | [8×8],    | "volts",  | 0.0196,                           | 0,               | 0.0,    | 5.0,  | 2  |      |
| #er.<br>#oli | afrBins1 = array,                                                     | U08,        | ٥,      | [8×8],    | "volts",  | 0.0196,                           | ο,               | 0.0,    | 5.0,  | 2  |      |
| #err         | afrBins1 = array,                                                     | U08,        | ο,      | [8×8],    | "volts",  | 0.0196,                           | ο,               | 0.0,    | 5.0,  | 2  | _    |
| #eli<br>#eli | afrBins1 = array,                                                     | U08,        | ο,      | [8×8],    | "volts",  | 0.0196,                           | ο,               | 0.0,    | 5.0,  | 2  |      |
| #011         | T AEM_NON_LINEAR<br>afrBins1 = array,                                 | U08,        | ο,      | [8×8],    | "volts",  | 0.0196,                           | 0,               | 0.0,    | 5.0,  | 2  |      |
| #eli         | T DIYWB_NON_LINEAR<br>afrBins1 = array,                               | U08,        | ο,      | [8×8],    | "volts",  | 0.0196,                           | ο,               | 0.0,    | 5.0,  | 2  |      |
| #ein         | f DYNOJET_LINEAR<br>afrBins1 = array,                                 | U08,        | ο,      | [8×8],    | "volts",  | 0.0314,                           | ο,               | 0.0,    | 5.0,  | 2  |      |
| #eln<br>#eli | <pre>† TECHEDGE_LINEAR afrBins1 = array, if INNOVATE 1 2 LINEAR</pre> | U08,        | ٥,      | [8×8],    | "AFR",    | Beschreibung d<br>in MegaTune erc | er AFR<br>gänzen | Anzejge | 19.0, | i. | 1    |
| #eli         | afrBins1 = array,                                                     | U08,        | ο,      | [8×8],    | "AFR",    | 0.1901,                           | Ù,               | 10.0, 7 | 20.0, | 1  |      |
| #eli         | afrBins1 = array,                                                     | U08,        | ο,      | [8×8],    | "AFR",    | 0.0392,                           | 255.0,           | 10.0,   | 20.0, | 1  |      |
| "⊂<br>#⊝]†   | afrBins1 = array,                                                     | U08,        | Ο,      | [8×8],    | "AFR",    | 0.057647,                         | 127.5,           | 10.0,   | 20.0, | 1  | ÷    |
| #er.         |                                                                       | 1108,       | 0,      | [8x8]     | "Volt     | 0.0196,                           | 0.               | 0.0,    | 5.0,  | 2  |      |
| #eli         | f ZEITRONIX_LINEAR<br>afrBins1 = array,                               | U08,        | 0,      | [8×8],    | "AFR",    | 0.0392,                           | 244.8,           | 9.6,    | 19.6, | 1  |      |
| æis<br>; s⊦  | e<br>would never get here bu                                          | t just in   | .case ( | put mess; | age on sc | reen                              |                  |         |       |    | ~    |
| <            |                                                                       |             |         |           |           |                                   |                  |         |       |    | > .: |

# #elif ZEITRONIX\_LINEAR afrBins2 = array, U08, 80, [8x8], "AFR", 0.0392, 244.8, 9.6, 19.6, 1

| 🖪 msi            | ns-extra.ini - Editor                                       |                      |                    |                        |                       |               |                     |          |           |           |      |         |
|------------------|-------------------------------------------------------------|----------------------|--------------------|------------------------|-----------------------|---------------|---------------------|----------|-----------|-----------|------|---------|
| <u>D</u> atei    | <u>B</u> earbeiten F <u>o</u> rmat <u>A</u> nsicht <u>?</u> |                      |                    |                        |                       |               |                     |          |           |           |      |         |
|                  | ; TARGET AFI                                                | <b>≀table</b> ∶      | 2 BINS             | FOR VE 3               | (First :              | find          | which sensor        | used)    |           |           |      | ~       |
| #1† N<br>#olif   | ARROW_BAND_EGO<br>afrBins2 = array,<br>WB 1 0 LINEAP        | U08,                 | 80,                | [8×8],                 | "Volts"               | ,             | 0.0196,             | 0,       | 0.0,      | 5.0,      | 2    |         |
| #c14€            | afrBins2 = array,                                           | U08,                 | 80,                | [8×8],                 | "volts"               | ,             | 0.0196,             | ο,       | 0.0,      | 5.0,      | 2    |         |
| #ein<br>#olif    | afrBins2 = array,                                           | U08,                 | 80,                | [8×8],                 | "volts"               | ,             | 0.0196,             | ο,       | 0.0,      | 5.0,      | 2    |         |
| #⊖lif            | afrBins2 = array,                                           | U08,                 | 80,                | [8×8],                 | "Volts"               | ,             | 0.0196,             | ο,       | 0.0,      | 5.0,      | 2    | -       |
| #⊖lif            | afrBins2 = array,                                           | U08,                 | 80,                | [8×8],                 | "Volts"               | ,             | 0.0196,             | ο,       | 0.0,      | 5.0,      | 2    |         |
| #elif            | afrBins2 = array,                                           | U08,                 | 80,                | [8×8],                 | "volts"               | ,             | 0.0196,             | 0,       | 0.0,      | 5.0,      | 2    |         |
| #elif            | afrBins2 = array,                                           | U08,                 | 80,                | [8×8],                 | "volts"               | ,             | 0.0314,             | 0,       | 0.0,      | 5.0,      | 2    |         |
| #≏lif            | afrBins2 = array,                                           | U08,                 | 80,                | [8×8],                 | "AFR",                |               | 0.0392,             | 229.0    | , 9.0,    | 19.0,     |      | 1       |
| #olif            | afrBins2 = array,                                           | U08,                 | 80,                | [8×8],                 | "AFR",                |               | 0.1961,             | ο,       | 10.0,     | 20.0,     | 1    |         |
| #ellif           | afrBins2 = array,                                           | U08,                 | 80,                | [8×8],                 | "AFR",                |               | 0.0392,             | 255.0,   | 10.0,     | 20.0,     |      | 1       |
| #olif            | afrBins2 = array,                                           | U08,                 | 80,                | [8×8],                 | "AFR",                |               | 0.057647,           | 127.5,   | 10.0,     | 20.0,     |      | 1       |
| #ern             | afrBins2 = array                                            | 1108                 | 80,                | [8×8]                  | "Volts"               | _             | 0 0196              | 0,       | 0.0,      | 5.0,      | 2    |         |
| #elif            | ZEITRONIX_LINEAR<br>afrBins2 = array,                       | U08,                 | 80,                | [8×8],                 | "AFR",                |               | 0.0392,             | 244.8,   | 9.6,      | 19.6,     | 1    | J       |
| #else<br>;<br>#e | should never get here<br>rror "No O2 sensor co              | but jusi<br>nfigurat | t incas<br>ion sel | se put me<br>lected; Y | ssage on<br>ou need ' | scre<br>to fi | en<br>x the setting | gs.ini.∖ | n∖nMega⊤u | ne termin | atin | ıg. " 🗸 |
| <                |                                                             |                      |                    |                        |                       |               |                     |          |           |           |      | >       |

#### #elif ZEITRONIX\_LINEAR

lambda2 = { fuelADC/255.0 + 0.5 }
afr2 = { lambda \* 14.7 }

| 📕 msns-extra.ini - Edi                                       | tor                                                                                             |                                                                                                           |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| <u>D</u> atei <u>B</u> earbeiten F <u>o</u> rmat             | Ansicht ?                                                                                       |                                                                                                           |
| mat<br>rpm<br>time<br>#if CELSTUS                            | = { tempCvt(table(matADC, "matfactor.inc")-40)<br>= { rpm100*100<br>= { timeNow                 | <pre>}; Manifold temperature in user unime<br/>}; True RPM.<br/>}; "timeNow" is a parameterless bui</pre> |
| egttemp                                                      | = { egtADC * 3.90625 }                                                                          | ; Setup for converting 0-5V = 0 -                                                                         |
| #else<br>egttemp<br>#endif                                   | = { egtADC * 7.15625 }                                                                          | ; Setup for converting 0-5V = 0 -                                                                         |
| Added for second                                             | 1 O2 sensor                                                                                     |                                                                                                           |
| #fr1 NARROW_BAND_ed<br>afr2<br>lambda2<br>#elif ZEITRONIX_NC | <pre>&gt;&gt; = { table(fuelADC, "NBafr100.inc") / 100.0<br/>= { afr2 / 14.7<br/>N_LINEAR</pre> | }                                                                                                         |
| lambda2                                                      | = { table(tuelADC, "WBatr100Zeit.inc") / 100.0<br>- { lambda * 14.7                             |                                                                                                           |
| #elif ZEITRONIX_LI<br>lambda2<br>afr2                        | NEAR<br>= { fue]ADC/255.0 + 0.5<br>= { lambda * 14.7                                            | 3 N                                                                                                       |
| lambda2<br>afr2                                              | = { fuelADC/255.0 + 0.5<br>= { lambda * 14.7                                                    | }                                                                                                         |
| #else<br>lambda2<br>afr2<br>#endif                           | = { table(fuelADC, "wBlambda100MoT.inc") / 100.0<br>= { lambda2 * 14.7                          | ) }                                                                                                       |
| #include "lambdase                                           | ensors.ini"                                                                                     |                                                                                                           |
|                                                              |                                                                                                 | ×                                                                                                         |

# Anmerkung:

Im MegaSquirt Support Forum gibt es das Thema "Changing LambdaSensors.ini for Zeitronix WB". Hier wird darauf hingewiesen, dass der ADC Wert nicht 255 sondern 244,8 betragen muss, siehe folgende Seite. Dies gilt natürlich auch für die Anzeige in TunerStudio, siehe nächster Abschnitt.

Ein Parallelbetrieb der Software MegaTune und Zeitronix hat gezeigt, dass der sich der angezeigte Lambda/AFR Wert nur geringfügig zwischen beiden Programmen unterscheidet (Lambda ca. 0,02 und AFR ca. 0,3 mehr im Programm MegaTune), sofern man das bei dieser geringen Abweichung überhaupt beurteilen kann.

# Folgend die Anpassungen für das Programm TunerStudio:

- <u>lambdaSensor.ini</u> In diese Datei wird die mathematische Beschreibung der Kennlinie für die AFR Anzeige in TunerStudio hinterlegt. C:\Programme\EFIAnalytics\*evtl.Version*\TunerStudioMS\inc\
- 2. <u>mainController.ini</u>

C:\Dokumente und Einstellungen\Name\My Docments\TunerStudioProjects\Projektbez.\projectCfg\

- 3. <u>settingGroups.xlm und settingGroups.xml.withPowerdex</u> Damit wird die Einstellung "Project Properties" um die "Zeitronix Linear WB" erweitert. Im selben Verzeichnis ist auch eine Datei die noch den Zusatz "withPowerdex" trägt. Die genaue Funktion dieser Datei ist nicht klar. Da sie aber identisch mit der Datei ohne den Zusatz ist, wird auch hier die Ergänzung der Zeitronix WB vorgenommen. C:\Programme\EFIAnalytics\ *evtl.Version* \TunerStudioMS\config\
- 4. msns-extra.029q-29w.ini

Ergänzung der Firmware Definition um die "Zeitronix Linear WB". Achtung:

Die Ergänzung um die Zeitronix Linear WB muss bei jeder Firmware Definition separat erfolgen. Wird also die Firmware msns-extra.29y.ini eingesetzt, so muss diese auch um die Zeitronix Linear WB ergänzt werden.

C:\Programme\EFIAnalytics\ evtl. Version \TunerStudioMS\config\ecuDef\

zu 1. lambdaSensor.ini

In diese ini Datei muss die mathematische Beschreibung der Kennlinie für die AFR Anzeige in MegaTune hinzugefügt werden.

#elif ZEITRONIX\_LINEAR

```
      afr
      = { 9.6 + (egoADC * 0.039216) }
      }

      lambda
      = { afr / 14.7 }
      }

      TargetAFR
      = { 9.6 + (afrtarget * 0.039216) }
      }

      TargetLambda
      = { TargetAFR / 14.7 }
      }
```

e) Erläuterung der Konstanten 9,6:

Hierbei handelt es sich um den AFR Startwert bei 0Vout sensor gemäß oben stehender Kennlinie. Dies ist der geringste AFR Wert (= 9,6 AFR) der von der Zeitronix Breitbandsonde gemessen werden kann.

f) Erläuterung egoADC:

EGO steht für ExhausGasOxigen = Sauerstoffgehalt im Abgas. Die vom Sensor gelieferte Spannung, bei einer Breitbandsonde meist 0V bis 5V, wird vom ADC = AnalogDigitalConverter in einen Zählwert von 0 bis 255 umgesetzt. Somit gibt egoADC den Sauerstoffgehalt im Abgas als Zählwert zwischen 0 und 255 wieder. g) Erläuterung der Konstanten 0,039216:

Das ADC (AnalogDigitalSignal), das von 0 bis 255 geht, verhält sich proportional zur Ausgangsspannung des Sensors, die von 0V bis 5V geht. Somit gilt:

ADC 0 = 0VOUT Sensor ADC 255 = 5VOUT Sensor

Um jetzt zu bestimmen wie viel Volt Sensorspannung ein ADC Zählwert ist, muss man die Werte in ein Verhältnis setzen:

VOUT Sensor max. 5V / ADC max. 255 = 0,019607843V

Gemäß oben stehender Kennlinie ist:

AFR = 2 x Vout + 9,6

Somit muss die Sensorspannung verdoppelt werden: 2 x 0,019607834V = 0,39215686V gewählt: 0,039216V

- h) Proberechnung
  - Ausgangsspannung der Sonde = 0V => egoADC =0
     AFR = 9,6 + egoADC \* 0,039216 = 9,6 + 0 \* 0,039216V = 9,6 ok
  - Ausgangsspannung der Sonde = 2,5V => egoADC = 127
     AFR = 9,6 + egoADC \* 0,039216 = 9,6 + 127 \* 0,039216V = 14,6 ok
  - Ausgangsspannung der Sonde = 5V => egoADC = 255
     AFR = 9,6 + egoADC \* 0,039216 = 9,6 + 255 \* 0,039216V = 19,6 ok

Folgend die Datei "lambdaSensor.ini" mit der Beschreibung der linearen Zeitronix Kennlinie:

| 📕 lambdaSensors.ini - Editor                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| <u>D</u> atei <u>B</u> earbeiten F <u>o</u> rmat <u>A</u> nsicht <u>?</u>                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                             |
| <pre>#elif INNOVATE_LC1_DEFAULT ; 0.0v = 0.5 lambda = 7.35:1 AFR ; 2.5v = 1.0 lambda = 14.70:1 AFR ; 5.0v = 1.5 lambda = 22.05:1 AFR ; afr = 7.35 + egoADC * 0.057647 lambda = { egoADC/255.0 + 0.5 afr = { lambda * 14.7 TargetLambda = { afrtarget/255.0 + 0.5 TargetAFR = { TargetLambda * 14.7 #elif ZEITRONIX_NON_LINEAR afr = { table(egoADC, "WBafr100Zeit.inc") / : lambda = { afr / 14.7 TargetAFR = { table(afrtarget, "WBafr100Zeit.inc") / : TargetLambda = { TargetLambda / 14.7</pre> | Beschreibung der linearen Zeitronix<br>Kennlinie hinzufügen |
| <pre>#elif ZEITRONIX_LINEAR     afr = { 9.6 + (egoADC * 0.039216)     lambda = { afr / 14.7     TargetAFR = { 9.6 + (afrtarget * 0.039216)     TargetLambda = { TargetAFR / 14.7</pre>                                                                                                                                                                                                                                                                                                              |                                                             |
| #ETIT AEM_LINEAR<br>afr = { 9.72 + egoADC * 0.038666<br>lambda = { afr / 14.7<br>TargetAFR = { 9.72 + afrtarget * 0.038666<br>TargetLambda = { TargetAFR / 14.7                                                                                                                                                                                                                                                                                                                                     | }                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             |

### zu 2. mainController.ini

Diese ini Datei dient zur Darstellung der AFR Werte im Programm TunerStudio. Hier sind die mathematischen Beschreibungen auf der Seite 7 AFR Table 1 und AFR Table 2 zu ergänzen. Auch hier ist wieder besonders darauf zu achten, dass die Schreibweise (groß, klein, etc.) genau wie in der lambdaSensor.ini erfolgt. Folgende mathematischen Beschreibungen sind hier zu ergänzen:

| 🖪 mai          | nController.ini - Edi                         | itor                      |          |          |                 |            |                  |             |                      |       |     |     |
|----------------|-----------------------------------------------|---------------------------|----------|----------|-----------------|------------|------------------|-------------|----------------------|-------|-----|-----|
| Datei E        | <u>B</u> earbeiten F <u>o</u> rmat <u>A</u> n | nsicht <u>?</u>           |          |          |                 |            |                  |             |                      |       |     |     |
| pa             | ge = 7 🔍 🗖 🤁                                  | RGET A                    | FR table | 1 BIN    | 5 FOR VE        | 1 (First   | find which senso | r used)     | )                    |       |     | ^   |
| #if N          | ARROW_BAND_EGO<br>afrBins1 = a                | rrav.                     | U08.     | ο.       | [8×8].          | "volts".   | 0.0196.          | 0.          | 0.0.                 | 5.0.  | 2   |     |
| #elif          | WB_1_0_LINEAR<br>afrBins1 = a                 | rray,                     | U08,     | ο,       | [8×8],          | "volts",   | 0.0196,          | 0,          | 0.0,                 | 5.0,  | 2   |     |
| #elit<br>#olit | WB_UNKNOWN<br>afrBins1 = a                    | rray,                     | U08,     | ο,       | [8×8],          | "volts",   | 0.0196,          | 0,          | 0.0,                 | 5.0,  | 2   | _   |
| #elif          | afrBins1 = a                                  | rray,                     | U08,     | Ο,       | [8×8],          | "volts",   | 0.0196,          | 0,          | 0.0,                 | 5.0,  | 2   |     |
| #elif          | afrBins1 = a<br>DIYWB_NON_LINE                | rray,<br>AR               | U08,     | Ο,       | [8×8],          | "Volts",   | 0.0196,          | 0,          | 0.0,                 | 5.0,  | 2   |     |
| #elif          | afrBins1 = a<br>DYNOJET_LINEAR                | rray,                     | U08,     | 0,       | [8×8],          | "Volts",   | 0.0196,          | 0,          | 0.0,                 | 5.0,  | 2   |     |
| #elif          | atrBins1 = a<br>TECHEDGE_LINEA                | rray,<br>R                | 008,     | 0,       | [8x8],<br>[0v0] | "Volts",   | 0.0314,          | 0,<br>220.0 | 0.0,                 | 5.0,  | 2   | 1   |
| #elif          | INNOVATE_1_2_L                                | array,<br>INEAR<br>array. | 008.     | 0,<br>0. | [8x8].          | AFR ,      | Beschreibung     | der AFR     | Anzeige              | 19.0, | 1   | -   |
| #elif          | INNOVATE_0_5_L<br>afrBins1 =                  | INEAR<br>array,           | U08,     | o,       | [8×8],          | "AFR",     | für TunerStudie  | 255.0,      | <u>ugen</u><br>10.0, | 20.0, | - 1 |     |
| #elif          | INNOVATE_LC1_D                                | EFAULT<br>array,          | U08,     | ο,       | [8×8],          | "AFR",     | 0.057647,        | 127.5,      | 10.0,                | 20.0, | 1   |     |
| #elit          | ZEITRONIX_NON_<br>afrBins1 = a                | LINEAR<br>rray.           | 1108,    | 0,       | [8×8].          | "Volts"    | 0.0196,          | 0,          | 0.0,                 | 5.0,  | 2   |     |
| #elit          | afrBins1 =                                    | аrray,                    | U08,     | 0,       | [8×8],          | "AFR",     | 0.0392,          | 244.8,      | 9.6,                 | 19.6, | 1   | )   |
| ; Sho          | uld never get h                               | ere bu                    | t just i | ncase (  | out mess        | age on scr | reen             |             |                      |       |     | ~   |
| <u>&lt;</u>    |                                               |                           |          | _        | _               | _          |                  | _           | _                    |       |     | 2.1 |

#### #elif ZEITRONIX\_LINEAR

afrBins1 = array, U08, 0, [8x8], "AFR", 0.0392, 244.8, 9.6, 19.6, 1

#### #elif ZEITRONIX\_LINEAR

afrBins2 = array, U08, 80, [8x8], "AFR", 0.0392, 244.8, 9.6, 19.6, 1

| 📕 mai            | nController.ini - Editor              |           |       |            |              |             |           |       |       |   | X |
|------------------|---------------------------------------|-----------|-------|------------|--------------|-------------|-----------|-------|-------|---|---|
| <u>D</u> atei    | Bearbeiten Format Ansicht ?           |           |       |            |              |             |           |       |       |   |   |
| بر عدس           | TARGET AF                             | R table 2 | BINS  | FOR VE 3   | (First find  | which sense | or used)) |       |       |   | ^ |
| #]   N.<br>#].*E | afrBins2 = array,                     | U08,      | 80,   | [8×8],     | "volts",     | 0.0196,     | 0,        | 0.0,  | 5.0,  | 2 |   |
| #elli<br>#olif   | afrBins2 = array,                     | U08,      | 80,   | [8×8],     | "Volts",     | 0.0196,     | Ο,        | 0.0,  | 5.0,  | 2 |   |
| #⊂liif           | afrBins2 = array,                     | U08,      | 80,   | [8×8],     | "Volts",     | 0.0196,     | Ο,        | 0.0,  | 5.0,  | 2 |   |
| #⊂III<br>#olif   | afrBins2 = array,                     | U08,      | 80,   | [8×8],     | "volts",     | 0.0196,     | Ο,        | 0.0,  | 5.0,  | 2 | • |
| #⊂III<br>#olif   | afrBins2 = array,                     | U08,      | 80,   | [8×8],     | "Volts",     | 0.0196,     | Ο,        | 0.0,  | 5.0,  | 2 |   |
| #elli<br>#olif   | afrBins2 = array,                     | U08,      | 80,   | [8×8],     | "volts",     | 0.0196,     | Ο,        | 0.0,  | 5.0,  | 2 |   |
| #⊂111            | afrBins2 = array,                     | U08,      | 80,   | [8×8],     | "volts",     | 0.0314,     | Ο,        | 0.0,  | 5.0,  | 2 |   |
| #⊂lif            | afrBins2 = array,                     | U08,      | 80,   | [8×8],     | "AFR",       | 0.0392,     | 229.0,    | 9.0,  | 19.0, | 1 |   |
| #⊂lif            | afrBins2 = array,                     | U08,      | 80,   | [8×8],     | "AFR",       | 0.1961,     | 0,        | 10.0, | 20.0, | 1 |   |
| #⊂lif            | afrBins2 = array,                     | U08,      | 80,   | [8×8],     | "AFR",       | 0.0392,     | 255.0,    | 10.0, | 20.0, | 1 |   |
| #⊂lif            | afrBins2 = array,                     | U08,      | 80,   | [8×8],     | "AFR",       | 0.057647,   | 127.5,    | 10.0, | 20.0, | 1 |   |
| #ern             | afrBins2 = array,                     | U08,      | 80,   | [8x8]      | "Volts",     | 0.0196,     | ٥,        | 0.0,  | 5.0,  | 2 |   |
| #elif            | ZEITRONIX_LINEAR<br>afrBins2 = array, | U08,      | 80,   | [8×8],     | "AFR",       | 0.0392,     | 244.8,    | 9.6,  | 19.6, | 1 | ) |
| ;                | Should never get here                 | but just  | incas | se put mes | sage on scre | een         |           |       |       |   | ~ |
| <                | 1111                                  |           |       |            |              |             |           |       |       |   | > |

```
#elif ZEITRONIX LINEAR
    lambda2 = \{ fuelADC/255.0 + 0.5 \}
                 = { lambda * 14.7
    afr2
                                                       }
 📕 mainController.ini - Editor
                                                                                                             Datei Bearbeiten Format Ansicht ?
 梢f CELSIUS
                       = { egtADC * 3.90625 }
                                                                                ; Setup for converting 0-5V = 0 ·
egttemp
#else
 egttemp
#endif
                      = { egtADC * 7.15625 }
                                                                               ; Setup for converting 0-5V = 0 -
  Added for second O2 sensor
 = { table(fuelADC, "NBafr100.inc") / 100.0
= { afr2 / 14.7
 afr2
lambda2
#elif ZEITF
                                                                             }
                          afr2
       ZEITRONIX_NON_LINEAR
                        lambda2
 #elif ZEITRONIX_LINEAR
                       = { fuelADC/255.0 + 0.5
= { lambda * 14.7
    lambda2
    afr2
                   1_DEF
                      = { fuelADC/255.0 + 0.5
= { lambda * 14.7
    lambda2
    afr2
 #else
lambda2
                       = { table(fuelADC, "wBlambda100MoT.inc") / 100.0 }
= { lambda2 * 14.7 }
    afr2
 #endif
 #include "lambdaSensors.ini"
 #if MPXH6300A
                        = { table(baroADC, "kpafactor4250.inc")
= { (baroADC + 1.53) * 1.213675 }
                                                                              }
     barometer
    barometer
                                                                                                                  3
```

#### zu 3. settingGroups.xlm und settingGroups.xml.withPowerdex

Damit wird die Einstellung "Project Properties" in TunerStudio um die "Zeitronix Linear WB" erweitert.

Achtung!

Im selben Verzeichnis ist auch eine Datei die noch den Zusatz "withPowerdex" trägt. Die genaue Funktion dieser Datei ist nicht klar. Da sie aber identisch mit der Datei ohne den Zusatz ist, wird auch hier die Ergänzung der Zeitronix Linear WB vorgenommen.

Folgende mathematische Beschreibung ist zu ergänzen:

```
<configurationOption name="ZEITRONIX_LINEAR" displayName="Zeitronix lin-
ear WB AFR 9,6 - 19,6" />
```

| sttingGroups.xml - Editor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Bearbeiten Format Ansicht 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
| <pre>il version="1.0" encoding="uTF-8"?&gt;</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | erved."      |
| <pre><settinggroup displayname="EGO 02 Sensor" name="lambdaSensor"></settinggroup></pre> <pre></pre> <pre><td>a" /&gt;</td></pre> | a" />        |
| <pre><configurationoption displayname="Tech Edge sensor giving 0-5V 9-19:1 AFR" name="TECHEDGE_LINEAR"></configurationoption> <configurationoption displayname="Innovate sensor giving 1-2V 10-20:1 AFR" name="INNOVATE_1_2_LINEAR"></configurationoption> <configurationoption displayname="Innovate, PLX 0-5V 10-20:1 AFR" name="INNOVATE_0_5_LINEAR"></configurationoption> <configurationoption displayname="Innovate, PLX 0-5V 10-20:1 AFR" name="INNOVATE_0_5_LINEAR"></configurationoption> <configurationoption displayname="Innovate, PLX 0-5V 10-20:1 AFR" name="INNOVATE_0_5_LINEAR"></configurationoption> <configurationoption displayname="Innovate sensor giving 1-2V 10-20:1 AFR" name="INNOVATE_0_5_LINEAR"></configurationoption> <configurationoption displayname="Innovate sensor giving 0-5V 9-19:1 AFR" name="INNOVATE_0_5_LINEAR"></configurationoption> <configurationoption displayname="Innovate sensor giving 0-5V 9-10:1 AFR" name="INNOVATE_0_5_LINEAR"></configurationoption> <configurationoption displayname="Innovate sensor giving 0-5V 9-10:1 AFR" name="INNOVATE_0_5_LINEAR"></configurationoption> <configurationoption 0-5v="" 9-10:1="" afr"="" displayname="Innovate" giving="" name="INNOVATE_0_5_LINEAR" sensor=""></configurationoption> <configurationoption displayname="Zeitronix Non-linear WB" name="IEUTRONIX_NON LINEAR"></configurationoption> <configurationoption displayname="Zeitronix linear WB 9,6 - 19,6" name="ZEITRONIX_LINEAR"></configurationoption>         <td>&gt;<br/>bda" /&gt;</td></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ><br>bda" /> |
| <br><settinggroup displayname="Lambda Display" name="lambdaDisplay"><br/><configurationoption default="false" displayname="Lambda" name="LAMBDA"></configurationoption><br/><configurationoption default="true" displayname="AFR" name="AFR"></configurationoption><br/></settinggroup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~            |

#### zu 4. msns-extra.029q-29w.ini

Hierbei handelt es sich um die MS1-PNP Firmware-Definition. Damit die MS1-PNP auch die Werte als AFR-Werte versteht, sind hier folgende Anpassungen vorzunehmen:

```
#elif ZEITRONIX_LINEAR
```

afrBins1 = array, U08, 0, [8x8], "AFR", 0.0392, 244.8, 9.6, 19.6, 1

| 🖪 msr           | ıs-extra.029q-29w.ini - Edi | tor        |        |          |          |      |         |             |       |        |   |   |
|-----------------|-----------------------------|------------|--------|----------|----------|------|---------|-------------|-------|--------|---|---|
| <u>D</u> atei j | Bearbeiten Format Ansicht ? |            |        |          |          |      |         |             |       |        |   |   |
| (pa             | ge = 7     ; TARGET A       | FR table : | 1 BINS | 5 FOR VE | 1 (First | find | which s | ensor used) | )     |        |   | ~ |
| #hf N           | ARROW BAND EGO              |            |        |          |          |      |         |             |       |        |   |   |
|                 | afrBins1 = array,           | U08,       | Ο,     | [8×8],   | "volts", |      | 0.0196, | 0,          | 0.0,  | 5.0,   | 2 |   |
| #elit           | WB_1_0_LINEAR               | 1108       | 0      | F0~07    | "volte"  |      | 0.0106  | 0           | 0.0   | 5.0    | 2 |   |
| #elif           | WB_UNKNOWN                  | 000,       | Ο,     | [0,0],   | voits ,  |      | 0.0190, | υ,          | 0.0,  | 5.0,   | 2 |   |
|                 | afrBins1 = array,           | U08,       | Ο,     | [8×8],   | "volts", |      | 0.0196, | Ο,          | 0.0,  | 5.0,   | 2 | _ |
| #elit           | AEM_LINEAR                  | 1108       | 0      | F9~91    | "volte"  |      | 0 0106  | 0           | 0.0   | 5.0    | 2 |   |
| #elif           | AEM_NON_LINEAR              | 000,       | ο,     | [0,0],   | voits ,  |      | 0.0190, | υ,          | 0.0,  | 5.0,   | 2 |   |
|                 | afrBins1 = array,           | U08,       | Ο,     | [8×8],   | "Volts", |      | 0.0196, | 0,          | 0.0,  | 5.0,   | 2 |   |
| #elit           | DIYWB_NON_LINEAR            | 1108       | 0      | F0~07    | "volte"  |      | 0.0106  | 0           | 0.0   | 5 0    | 2 |   |
| #elif           | DYNOJET LINEAR              | 008,       | ο,     | [0,0],   | voits ,  |      | 0.0190, | υ,          | 0.0,  | 5.0,   | 2 |   |
|                 | afrBins1 = array,           | U08,       | Ο,     | [8×8],   | "Volts", |      | 0.0314, | 0,          | 0.0,  | 5.0,   | 2 |   |
| #elif           | TECHEDGE_LINEAR             |            | ~      | [00]     | "        |      | 0.0202  | 220.0       | ~ ~   | 10.0   | 1 |   |
| #⊳lif           | TNNOVATE 1 2 ITNEAR         | 008,       | υ,     | [8x8],   | AFR ,    |      | 0.0392, | 229.0,      | 9.0,  | 19.0,  | Т |   |
|                 | afrBins1 = array,           | U08,       | ο,     | [8×8],   | "AFR",   |      | 0.1961, | ο,          | 10.0, | 20.0,  | 1 |   |
| #elif           | INNOVATE_0_5_LINEAR         |            |        |          |          |      | 2 2222  | 1000        | 0.02  | 222.22 |   |   |
| #olif           | atrBins1 = array,           | 008,       | Ο,     | [8×8],   | AFR",    |      | 0.0392, | 255.0,      | 10.0, | 20.0,  | 1 |   |
| <b>π</b> ει 11  | afrBins1 = arrav.           | U08.       | ο.     | [8x8].   | "AFR".   | Ο.   | 057647. | 127.5.      | 10.0. | 20.0.  | 1 |   |
| #elif           | ZEITRONIX_NON_LINEAR        | ,          | -,     |          |          |      |         | ,           | ,     | ,      |   |   |
| He Life         | afrBins1 = array,           | U08.       | 0,     | [8x8],   | "Volts", |      | 0.0196, | 0,          | 0.0,  | 5.0,   | 2 |   |
| #ern            | afrBins1 = array,           | U08,       | ο,     | [8×8],   | "AFR",   |      | 0.0392, | 244.8,      | 9.6,  | 19.6,  | 1 | ) |
| #else           |                             |            | ,      |          |          |      | ,       | ,           | /     |        |   | - |
| <               | III                         |            |        |          |          |      |         |             |       |        |   | > |

#### #elif ZEITRONIX\_LINEAR

afrBins2 = array, U08, 80, [8x8], "AFR", 0.0392, 244.8, 9.6, 19.6, 1

| 📕 ms             | ns-extra.029q-29w.ini - Edit                          | tor      |           |                 |              |             |          |       |         |     |   |
|------------------|-------------------------------------------------------|----------|-----------|-----------------|--------------|-------------|----------|-------|---------|-----|---|
| <u>D</u> atei    | Bearbeiten Format Ansicht ?                           |          |           |                 |              |             |          |       |         |     |   |
| ₩8€ N            | TARGET AF                                             | R table  | 2 BINS    | FOR VE 3        | (First find  | which sense | or used) |       |         |     | ^ |
| ₩111 1<br>₩-7-24 | afrBins2 = array,                                     | U08,     | 80,       | [8×8],          | "volts",     | 0.0196,     | 0,       | 0.0,  | 5.0,    | 2   |   |
| #ein             | afrBins2 = array,                                     | U08,     | 80,       | [8×8],          | "Volts",     | 0.0196,     | Ο,       | 0.0,  | 5.0,    | 2   |   |
| #e111            | - WB_UNKNOWN<br>afrBins2 = array,                     | U08,     | 80,       | [8×8],          | "volts",     | 0.0196,     | ο,       | 0.0,  | 5.0,    | 2   |   |
| #elit            | <pre>- AEM_LINEAR afrBins2 = array,</pre>             | U08,     | 80,       | [8×8],          | "volts",     | 0.0196,     | ο,       | 0.0,  | 5.0,    | 2   | - |
| #elii            | AEM_NON_LINEAR                                        | U08.     | 80.       | <br>[8x8].      | "volts".     | 0.0196.     | 0.       | 0.0.  | 5.0.    | 2   |   |
| #eli1            | <pre>DIYWB_NON_LINEAR afrBins2 = array</pre>          | ,<br>U08 | 80        | [878]           | "Volts"      | 0.0196      | -,<br>0  | 0.0   | 5.0     | 2   |   |
| #elif            | <pre>DYNOJET_LINEAR ofrBins2 = array;</pre>           | 000,     | 90,<br>90 | [0,0],<br>[0,0] | "volte"      | 0.0214      | o,       | 0.0,  | 5.0     | 2   |   |
| #elif            | TECHEDGE_LINEAR                                       |          | ov,       | [0,0],          | voits ,      | 0.0514,     | 0,       | 0.0,  | 5.0,    | 2   |   |
| #elii            | atrBins2 = array,<br>= INNOVATE_1_2_LINEAR            | 008,     | 80,       | [8×8],          | "AFR",       | 0.0392,     | 229.0,   | 9.0,  | 19.0,   | 1   |   |
| #elii            | afrBins2 = array,<br><sup>=</sup> INNOVATE 0 5 LINEAR | U08,     | 80,       | [8×8],          | "AFR",       | 0.1961,     | 0,       | 10.0, | b 20.0, | 1   |   |
| #⊳lif            | afrBins2 = array,                                     | U08,     | 80,       | [8×8],          | "AFR",       | 0.0392,     | 255.0,   | 10.0, | b 20.0, | 1   |   |
| #c144            | afrBins2 = array,                                     | U08,     | 80,       | [8×8],          | "AFR",       | 0.057647,   | 127.5,   | 10.0, | b 20.0, | 1   |   |
| #ern             | afrBins2 = array.                                     | 1108,    | 80,       | [8x8],          | "Volts",     | 0.0196.     | 0,       | 0.0,  | 5.0,    | 2   |   |
| #elii            | <sup>=</sup> ZEITRONIX_LINEAR<br>afrBins2 = array,    | U08,     | 80,       | [8×8],          | "AFR",       | 0.0392,     | 244.8,   | 9.6,  | 19.6,   | _1) |   |
| #eise<br>;       | Should never get here                                 | but jus  | t incas   | se put mes      | ssage on scr | een         |          |       |         |     | ~ |
| <                | 1111                                                  |          |           |                 |              |             |          |       |         |     | > |

| #elif ZEITRONI                            | IX_LINEAR                                                                            |                                   |
|-------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------|
| lambda2 = {                               | [ fuelADC/255.0 + 0.5 }                                                              |                                   |
| afr2 = {                                  | { lambda * 14.7 }                                                                    |                                   |
| 📕 msns-extra.029q-29                      | w.ini - Editor                                                                       |                                   |
| <u>Datei B</u> earbeiten F <u>o</u> rmat  | Ansicht ?                                                                            |                                   |
| #ff CELSIUS<br>egttemp<br>#else           | = { egtADC * 3.90625 }                                                               | ; Setup for converting 0-5V = 0 - |
| egttemp<br>#endif                         | = { egtADC * 7.15625 }                                                               | ; Setup for converting 0-5V = 0 - |
| ; Added for second<br>#IT NARROW BAND EG  | 02 sensor                                                                            |                                   |
| afr2<br>lambda2                           | = { table(fuelADC, "NBafr100.inc") / 100.0<br>= { afr2 / 14.7                        | }                                 |
| lambda2                                   | <pre>N_LINEAR = { table(fuelADC, "WBafr100Zeit.inc") / 100.0 - [ lambda * 14.7</pre> | 1                                 |
| #elif ZEITRONIX_LI<br>lambda2<br>afr2     | NEAR<br>= { fuelADC/255.0 + 0.5<br>= { lambda * 14.7                                 | }                                 |
| ambda2<br>afr2                            |                                                                                      | }                                 |
| lambda2<br>afr2<br>#endif                 | = { table(fuelADC, "WBlambda100MOT.inc") / 100.0<br>= { lambda2 * 14.7               | }                                 |
| #include "lambdase                        | nsors.ini"                                                                           |                                   |
| #if MPXH6300A<br>; barometer<br>barometer | = { table(baroADC, "kpafactor4250.inc")<br>= { (baroADC + 1.53) * 1.213675 }         | }                                 |
| <                                         |                                                                                      | D .::                             |

Beiträge aus verschiedenen Foren zu o.g Thema:

1. msextra.com Forum <u>http://www.msextra.com/forums/viewtopic.php?f=98&t=29167</u>

Ergänzend das Thema im Forum als PDF: msextra.com Forum.pdf

2. miataturbo.net Forum http://www.miataturbo.net/showthread.php?t=28005

Ergänzend das Thema im Forum als PDF: miataturbo.net Forum.pdf

# Abstimmung AFR Table

Die "neue" AFR Table mit Eingabewerte in AFR

| 🗾 AFR Tar          | gets for VE Table 1 (AFR)                                                          | × |
|--------------------|------------------------------------------------------------------------------------|---|
| <u>File T</u> ools |                                                                                    |   |
| - kPa              | AFR                                                                                |   |
| 150                | 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5                                            |   |
| 120                | 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9                                            |   |
| 100                | 14.2         14.2         14.2         13.8         13.8         13.5         13.5 |   |
| 80                 | 14.2 14.2 15.0 15.0 15.0 14.7 14.7 13.8                                            |   |
| 60                 | 14.2 14.2 15.5 16.0 16.0 16.0 16.0 13.8                                            |   |
| 50                 | 14.2 14.2 15.5 16.0 16.0 16.0 16.0 13.8                                            |   |
| 40                 | 13.5 13.5 14.7 15.5 16.0 16.0 16.0 13.8                                            |   |
| 30                 | <b>13.5 13.5 14.7 14.7 14.7 14.7 14.7 13.8</b>                                     |   |
|                    | BPM                                                                                |   |
|                    | 800 1200 1500 2000 3000 4000 5000 6500                                             |   |
|                    |                                                                                    |   |

Folgend als Richtlinie eine Tabelle zu den Abgaswerten.

| ABGASWERTE FÜR BENZIN                                                       |        |        |
|-----------------------------------------------------------------------------|--------|--------|
| Hinweise                                                                    | Lambda | AFR    |
| zu Fett aber<br>Abgastemperatur<br>niedrig                                  | 0,68   | 10,00  |
|                                                                             | 0,70   | 10,23  |
|                                                                             | 0,72   | 10,53  |
|                                                                             | 0,74   | 10,86  |
|                                                                             | 0,76   | 11,20  |
|                                                                             | 0,78   | 11,47  |
| beste Beschleunigung<br>und Volllastbereich                                 | 0,80   | 11,76  |
|                                                                             | 0,82   | 12,05  |
|                                                                             | 0,84   | 12,38  |
|                                                                             | 0,86   | 12,60  |
|                                                                             | 0,88   | 12,94  |
| gute Beschleunigung<br>und Fahrbereich für<br>Rennmotore                    | 0,90   | 13,23  |
|                                                                             | 0,92   | 13,57* |
|                                                                             | 0,94   | 13,84  |
|                                                                             | 0,96   | 14,11  |
| geringste Abgase und<br>Fahrbereich für G-Kat Motore<br>ohne Beschleunigung | 0,98   | 14,40  |
|                                                                             | 1,00   | 14,70  |
|                                                                             | 1,02   | 14,99  |
|                                                                             | 1,04   | 15,25  |
| bester<br>Wirkungsgrad                                                      | 1,06   | 15,58  |
|                                                                             | 1,08   | 15,84  |
|                                                                             | 1,10   | 16,17  |
| zu Mager<br>Abgase zu heiß!!!                                               | 1,12   | 16,48  |
|                                                                             | 1,17   | 17,18  |
|                                                                             | 1,22   | 17,93  |
|                                                                             | 1,28   | 18,76  |
|                                                                             | 1,34   | 19,66  |
| * = bester Leerlauf bei Turbo / Kompressor Motore                           |        |        |

## © BlueNA